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Abstract. The main goal of this work is to prove the equivalence of various formulations existing in the current
literature which give the governing equations of small displacements superimposed over initial static deformations
of thin cylindrical shells. It is shown that the main difference comes from the definition of incremental stress
resultants and the dependence of elastic coefficients on initial deformation. When the functional dependence
of elastic coefficients on initial deformation is taken into consideration, it is shown that all the derivations are
equivalent to each other.
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1. Introduction

Researchers working in the area of wave propagation in prestressed circular cylindrical thin
tubes filled with a viscous or inviscid fluid use the field equations of the so-called ‘theory of
small displacements superimposed on large initial static deformations’. Worthy of mentioning
among such theories are the buckling equations of thin cylindrical shells by Flügge-Koiter
(Flügge [1]), the mechanics of incremental deformations by Biot [2] and the equations of
motion of fluid-filled prestressed elastic tubes by Atabek and Lew [3] and ones more recently
derived by various researchers employing the tools of modern continuum mechanics (see,
for instance, Rachev [4] and Demiray [5]). The derivation of the buckling equations of
Flügge and Koiter is essentially based on equilibrium equations referred to the intermediate
configuration and the use of the second type of the Piola-Kirchoff stress tensor to define the
stress resultants. On the other hand, Atabek and Lew [3] derived their equations referring to
the final configuration and used the Cauchy stress tensor in their definition of stress resultants.
Of course, the incremental stress resultants and the equations of motion presented by these
researchers appear to be different from each other. In essence, they should not be different when
they are expressed in terms of displacement components. As I see it, the fundamental mistake
made by these researchers is that, in writing the linear constitutive relations for incremental
stress resultants in terms of small strains, both groups assumed the coefficients of their linear
expressions to be material constants. In reality, these coefficients are not simple material
constants, but rather are coefficients which depend both on the material properties and the
initial deformation. If the functional dependence of these coefficients on initial deformation
is known, (see, Rachev [4] and Demiray [5]) then it will be an easy exercise to convert one
set into the other and see that these two sets of equations are equivalent. Because of these
conceptual mistakes, researchers in the field are often accused of using the wrong set of
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440 H. Demiray

equations by proponents of the other set (see, for instance, Kuiken [6] and Hart and Shi [7]).
We were not aware of such a formal difference between these two derivations until we were
faced with criticism for the equations we used in our research.

In the present work, we shall prove that these two formulations are equivalent by using
the tools of modern continuum mechanics. For this purpose, by employing the theory of
so-called ‘small deformations superimposed on large initial static deformations’ we re-derive
these two sets of equations for prestressed cylindrical shells subjected to axially symmetric
time-dependent incremental displacements. In the Flügge-Koiter formulation we utilize the
second type of Piola-Kirchhoff incremental stress tensor, whereas in the other derivations,
the incremental Cauchy tensor is employed. Using the transformation rule between these two
types of incremental stress tensors, we then show that these two formulations are equivalent.
It is observed that the main difference between these derivations comes from the definition
of incremental stress resultants and the dependence of the coefficients of these incremental
stresses on the initial deformations. By utilizing a strain-energy density function proposed
by the author (Demiray [8]) for soft biological tissues, we show that for small initial defor-
mations these incremental coefficients may be treated as constants, whereas for large initial
deformations they are variable. This property of the coefficients should be taken into account
when studying the propagation of waves in large blood vessels.

2. Derivation of basic equations

In this section we shall derive the governing equations of an initially stressed cylindrical thin
shell when small dynamical displacements are superimposed on the initial deformations. For
this purpose, we shall utilize the theory of so-called ‘small deformations superimposed on
large initial static deformations’ and derive the governing equations of these two seemingly
different formulations and then prove that these two approaches are equivalent.

Let us consider a circular cylindrical membrane of radiusR0, subjected to an inner pressure
Pi, and a uniformly distributed axial force N . Upon application of these symmetrical forces,
the membrane will deform into another cylindrical shell with radius r0 and with membrane
forces N0

z and N0
�

in the axial and circumferential directions, respectively. Onto this initial
static deformation, we shall superimpose a symmetrical and time-dependent displacement
with components u(z; t) and w(z; t) in the radial and axial directions, respectively. Then the
position vector of a representative point (r0; �; z), will be as follows

r = (r0 + u)er + (z + w)ez; (1)

where er; e� and ez are the unit base vectors in cylindrical polar coordinates. In the course
of such a deformation, a unit line element along the generator (or unit vector ez) will deform
into the vector tz defined by

tz =
@r
@z

= u;z er + (1 + w;z)ez; (2)

where for brevity we defined ( );z =
@( )
@z

. Similarly the tangent vector e� will deform into

t� =
1
r0

@r
@�

= (1 + (u=r0))e�: (3)

The unit vectors along these vectors shall be denoted by t and e�, respectively.
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Figure 1. Small shell elements with stress resultants

Now, let us consider a small cylindrical shell element located between the planes z =
const; z + dz = const; � = const and � + d� = const (Figure 1(a)). After superimposing the
displacement-field components u and w on the given initial static deformation, we observe
that this small element deforms into the configuration given in Figure 1(c), with side lengths
ds� and dsz, where

ds� = (1 + (u=r0))r0 d�; dsz = ^z dz; (4)

with

^z = [u2
;z + (1 + w;z)

2]1=2: (5)

In what follows we shall present two different formulations for the equations of motion
governing the tube element.

2.1. FLÜGGE-KOITER FORMULATION

Let us denote the total membrane force resultants acting on the unit length of the intermediately
deformed configuration by N� and Nz , or, in vector form by N�e� and Nzez . When we let the
body undergo deformation, these force vectors will deform and take one of the configurations
described in Figures 1(b) and 1(c). In configuration 1(b), we shrink the deformed geometry
into the original dimension with a similar geometry, but rotate and stretch the base vectors
e� and ez into t� and tz , respectively. As will be shown in the subsequent sections, the stress
resultants used by Flügge and Koiter may be expressed in terms of the total second type of the
Piola-Kirchhoff stress tensor Skl referred to the intermediately deformed configuration. For
instance, the stress resultant N� may be expressed as N� = hS��, where h is the thickness
in the intermediate configuration and S�� is the normal component of Skl in the e� direction.
However, the stress resultants for other formulations are expressed in terms of the Cauchy
stress tensor t0

kl
, e.g., T� = h0t0

��
, where h0 is the thickness in the final configuration and t0

��
is

the circumferential component of the Cauchy stress tensor referred to the final configuration.
From the inspection of Figures 1(b) and 1(c), it can be shown that these stress resultants

are related to each other by

T� = N�(1 + (u=r0))= ^z and Tz = Nz ^z =(1 + (u=r0)): (6)
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Let the total external force acting on the unit area in the intermediate configuration be
expressed as

F = FNN + Fttz: (7)

Similarly, we denote the force vector acting per unit deformed area by

P = Pnn + Ptt; (8)

where N = t�� tz and n is the unit vector along N. These two vector fields have the following
relation

FN = Pn; Ft = (1 + (u=r0))Pt: (9)

Referring to Figure 1(b), we may give the total force acting per unit area as follows:

@

@z
[Nztz] +

1
r0

@

@�
[N�t�] + FNN + Fttz: (10)

This force should be equal to the mass times the acceleration of the element with unit area
given by

�h

 
@2u

@t2 er +
@2w

@t2 ez

!
: (11)

Equating the expressions (10) and (11), we have

@

@z
[Nztz] +

1
r0

@

@�
[N�t�] + FNN + Fttz = �h

 
@2u

@t2 er +
@2w

@t2 ez

!
: (12)

Introducing the explicit expressions for t� and tz into (12), we may obtain the equations of
motion in component form. However, in what follows we shall give the linearized governing
equations.

2.1.1. Linearization around the pre-deformed state

For future purposes, in this subsection we shall give the linearized equations of motion.
Therefore, we set

Nz = N0
z + �Nz; N� = N 0

� + �N�; FN = Pi + �FN ; Ft = 0 + �Ft; (13)

where the over-barred quantities stand for increments in the corresponding fields, with similar
orders of u and w which are assumed to be small. Introducing (13) into (12) and recalling the
expressions for t� and tz , we obtain the following linearized equations of motion.

N 0
z

@2u

@z2 +
N 0

�

r0

@w

@z
�

�N�

r0
+ �FN = �h

@2u

@t2 ;

N 0
z

@2w

@z2 �
N 0

�

r0

@u

@z
+

@ �Nz

@z
+ �Ft = �h

@2w

@t2 :

(14)
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These equations are exactly the same as those of Kuiken [6] who employed Flügge’s [1] buck-
ling equations derived for thin cylindrical shells in studying the problem of wave propagation
in prestressed elastic tubes.

2.2. ATABEK–DEMIRAY FORMULATION

This formulation is completely based on the interpretation given in Figure 1(c). In order to
write the equations of motions in this configuration, we should first write down the expression
of the total force acting on the deformed element. This force may be expressed as

@

@z
[Tzt(r0 + u)] d� dz +

@

@�
[T�e��z] d� dz + (Pnn + Ptt)(r0 + u)�z d� dz: (15)

This force should be equal to the total mass of the element times the acceleration vector, which
is given by

�0h0(r0 + u)�z d� dz

 
@2u

@t2 er +
@2w

@t2 ez

!
; (16)

where �0 is the final mass density and h0 is the deformed thickness of the membrane. Equating
equations (15) and (16), we obtain�

@

@z
[Tz(r0 + u)t] +

@

@�
[T��ze�]

�
[(r0 + u)�z]

�1

+(Pnn + Ptt) = �0h0
 
@2u

@t2 er +
@2w

@t2 ez

!
: (17)

Using the explicit expressions for t and n, we may write these equations in component form.
However, for future purposes we need only the linearized equations, so that we shall not list
the general equations here.

2.2.1. Linearization around the pre-deformed state

In order to be able to compare these two formulations, in this sub-section we shall give the
linearized equations of motion, and for this purpose we set

Tz = N 0
z + ��z; T� = N 0

�
+ ���; Pn = Pi + �Pn;

Pt = 0 + �Pt; h0 = h+ �h; �0 = �+ ��;
(18)

where the over-barred quantities represent increments for this configuration and the order
of them will be assumed to be same as the incremental displacement. Introducing (18) into
(17) and recalling the expressions of t and n, we obtain the following linearized equations of
motion for this configuration.

N 0
z

@2u

@z2 +
N 0

�
u

r2
0
�

���

r0
+ �Pn = �h

@2u

@t2 ; 
N0

z �N 0
�

r0

!
@u

@z
+

@ ��z

@z
+ �Pt = �h

@2w

@t2 :

(19)
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Furthermore, by using the relations given in (9), we can show that in the linear case the
following equations hold: �FN = �Pn and �Ft = �Pt. The equations (19) are exactly the same as
those obtained by Demiray [5].

2.3. EQUIVALENCE OF THESE DERIVATIONS

Although (14) and (19) seem to differ from each other, in essence, they are equivalent. In
order to show the equivalence of these two derivations we refer to the relations given in (6).
If we use definitions (13) and (18) and apply the linearization procedure, we obtain.

��� = �N� +N 0
�

�
u

r0
�

@w

@z

�
; ��z = �Nz +N0

z

�
@w

@z
�

u

r0

�
: (20)

Introducing (20) into (19) we have

N 0
z

@2u

@z2 +
N 0

�

r0

@w

@z
�

�N�

r0
+ �Pn = �h

@2u

@t2 ;

N0
z

@2w

@z2 �
N 0

�

r0

@u

@z
+

@ �Nz

@z
+ �Pt = �h

@2w

@t2 :

(21)

These equations are exactly the same as those of (14), which are due to Flügge [1].

3. Incremental constitutive relations

One of the main differences between the Flügge-Koiter derivation and the recent ones is
in the form of the incremental constitutive relations. In the Flügge-Koiter formulation the
incremental stress resultants are expressed in terms of the incremental deformation as

�N� = B11
u

a
+B12

@w

@z
; �Nz = B21

u

a
+B22

@w

@z
: (22)

Here the coefficients Bij(i = 1; 2) are treated as mere material constants. In reality, these are
not material constants, buth rather coefficients that depend on both the material constants and
the initial stresses. For engineering materials the initial deformation is not too large; therefore,
for such materials the variation of these coefficients with initial deformation may not be
important. However, for soft biological materials the initial deformation is very large and the
variation of these coefficients with initial deformation may become quite important. Therefore,
in studying the problems of wave propagation in initially stressed fluid-filled tubes, as applied
to blood-flow problems, the variations of these coefficients should be taken into account.
Of course, in order to find the dependence of these coefficients on the initial deformation,
one must know the nonlinear stress-strain relations of the material under consideration and
should use the theory of so-called ‘small displacements superimposed on large initial static
deformations’. In what follows we shall utilize this theory and obtain explicit expressions for
these coefficients as functions of the initial deformation.

Let t0
kl

be the Cauchy stress tensor in the statically deformed intermediate configuration
and t0

kl
be the Cauchy stress tensor in the final configuration. The deformation relating the

intermediate configuration to the final configuration may be described by

x0 = x + u(x; t); (23)
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where x is the position vector of a material point in the intermediate configuration and u(x; t)
is the superimposed displacement field. The Cauchy stress t0

kl
is related to the second Piola-

Kirchhoff stress tensor Skl, referred to the intermediate configuration, by

Skl = j
@xk

@x0m

@xl

@x0n
t0mn; (24)

where j is the Jacobian of the motion defined by j = det(
@x0
k

@xm
). If the superposed displacement

field is small, we can write

@x0
k

@xm
= �km + uk;m and j = 1 + ur;r: (25)

Here the indices following a semi colon denote the covariant (contravariant) differentiation
with respect to that indexed coordinate variable and the summation convention applies to
repeated indices. Introducing the incremental second Piola-Kirchhoff stress tensor �Skl and
incremental Cauchy stress tensor �tkl as follows

Skl = t0
kl +

�Skl; t0kl = t0
kl + �tkl (26)

and utilizing the relations (24) and (25), we obtain

�Skl = �tkl + ur;rt
0
kl � uk;mt

0
ml � ul;mt

0
mk: (27)

Soft biological tissue is assumed to be incompressible, which we shall also adopt throughout
this study. In this case (27) reduces to

�Skl = �tkl � uk;mt
0
ml � ul;mt

0
mk: (28)

The total stress resultants for the shell under investigation, referred to the final configuration,
is defined by

T� = h0t0��; Tz = h0t0zz: (29)

Employing the incompressibility condition, we may express the deformed thickness h0 in
terms of the thickness h as follows:

h0 =
h

(1 + u=r0)�z

�= h

�
1�

u

r0
�

@w

@z

�
: (30)

Setting t0
��

= t0
��

+ �t��; t
0

zz = t0
zz + �tzz and utilizing (30) in (29), we have

��� = h�t�� � t0
��
h

�
u

r0
+

@w

@z

�
; ��z = h�tzz � t0

zzh

�
u

r0
+

@w

@z

�
: (31)

Furthermore, from relation (28) we can write

�t�� = �S�� + 2t0
��

u

r0
; �tzz = �Szz + 2t0

zz

@w

@z
: (32)
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Introducing (32) into (31) and defining the incremental stress resultants �N� and �Nz by �N� =
h �S��; �Nz = h �Szz , we obtain

��� = �N� +N0
�

�
u

r0
�

@w

@z

�
; ��z = �Nz +N0

z

�
@w

@z
�

u

r0

�
: (33)

These expressions are exactly the same as those of (20). Therefore, we can state that in
the Flügge-Koiter formulation, the total stress resultants are defined in terms of the total
Piola-Kirchhoff stress tensor of the second type.

Having arrived at this important conclusion and having obtained relation (28), we may
express the coefficients Bij appearing in (22) in terms of the initial deformations. In order
to accomplish this, we need the explicit expression of the strain-energy density function. For
soft biological tissue the author (Demiray [8]) proposed a strain-energy density function of
the form

� = (�=2�) exp[�(I2 � 3)]; (34)

where �; � are two material constants and I2 is the second principal invariant of the Finger
deformation tensor.

Employing this type of strain-energy density function, we have found the explicit expres-
sions of ��� and ��z as (see Demiray and Antar [9] Equations (2.34) and (2.35))

��� = h

�
�0

11
u

r0
+ �0

12
@w

@z

�
; ��z = h

�
�0

21
u

r0
+ �0

22
@w

@z

�
; (35)

where the coefficients �0
ij
(i; j = 1; 2) are defined by

�0
11 = �F (��)[(�

2
�
�2
z + 3��2

�
) + 2�(�2

�
�2
z � ��2

�
)2];

�0
12 = �F (��)[(�

2
�
�2
z + ��2

�
) + 2�(�2

�
�2
z � ��2

z )(�2
�
�2
z � ��2

�
)];

�0
21 = �F (��)[(�

2
�
�2
z + ��2

z ) + 2�(�2
�
�2
z � ��2

z )(�2
�
�2
z � ��2

�
)];

�0
22 = �F (��)[(�

2
�
�2
z + 3��2

z ) + 2�(�2
�
�2
z � ��2

z )2];

(36)

where �� and �z are the stretch ratios in the circumferential and axial directions, respectively,
and the function F (��) is defined by

F (��) � exp[�(��2
�

+ ��2
z + �2

��
2
z � 3)]: (37)

Introducing (35) into (33) and considering the expressions for N0
�

and N0
z in terms of the

stretch ratios as follows (see, Demiray and Antar [9])

N0
� = h�F (��)(�

2
��

2
z � ��2

�
); N0

z = h�F (��)(�
2
��

2
z � ��2

z ); (38)

we may express the coefficients Bij in the following form:

B11 = 2�hF (��)[2�
�2
�

+ �(�2
�
�2
z � ��2

�
)2];

B12 = B21 = 2�hF (��)[�
2
�
�2
z + �(�2

�
�2
z � ��2

z )(�2
�
�2
z � ��2

�
)];

B22 = 2�hF (��)[2��2
z + �(�2

�
�2
z � ��2

z )2]:

(39)
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Figure 2. The variation ofB11 with initial deformation. Figure 3. The variation ofB12 with initial deformation.

Figure 4. The variation of B22 with initial deformation.

These expressions show that the coefficients Bij change with initial deformation. For the
details of this derivation the reader is referred to the work of Demiray and Antar [9]. The
variations of these coefficient with stretch ratio are evaluated numerically, and the results
are depicted in Figures 2–4. These figures indicate that the coefficients Bij(i; j = 1; 2)
change considerably with stretch ratio. Therefore, the assumption of constant coefficients is
valid for engineering materials and classical buckling problems. However, in applying these
incremental laws to the study of wave propagation in arteries, which are initially stressed by a
considerable amount, the same assumption does not apply. Hence, in studying such problems,
we must take into account the explicit dependence of these coefficients on initial deformation.
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4. Concluding remarks

As stated in the Introduction, the objective of this work is to prove the equivalence of two
seemingly different formulations existing in the current literature, and used by researchers for
the study of wave propagation in prestressed cylindrical thin shells. To this end, by utilizing
the theory of so-called ‘small deformations superimposed on large initial static deformations’,
we have re-derived the governing equations of the two different formulations presented by
Flügge-Koiter and Atabek-Demiray. In obtaining the equations derived by Flügge and Koiter,
we employed the incremental second type of the Piola-Kirchhoff stress tensor referred to
the intermediate configuration for defining the incremental stress resultants, whereas for those
derived by Atabek and Demiray we utilized the incremental Cauchy stress tensor referred to the
final configuration for the definition of incremental stress resultants. Due to these fundamental
differences in the definition of stress resultants in these two formulations, the governing
equations will look different from each other. Nevertheless, by utilizing the transformation
rules between the two incremental stresses and considering the definitions of incremental
stress resultants, we proved that these two formulations are equivalent. The most misleading
point in these derivations is the assumption of constancy of the incremental elastic coefficients.
In reality, they are not constants, but rather are functions of the initial deformation and can be
converted from one to the other through the use of a proper transformation rule.

To be more specific, we obtained the explicit expressions for the incremental coefficients
of both formulations as functions of the initial deformation, by using a strain-energy density
function previously proposed by the author (Demiray [8]) for soft biological tissues. Numerical
studies of these coefficients as functions of the initial deformation reveal that, for small initial
deformations, these coefficients remain almost constant. Therefore, the assumption of constant
elastic coefficients is valid for engineering materials and classical buckling problems. However,
for large values of the initial deformation, the variations of these coefficients are considerably
larger. Hence, in studying the propagation of harmonic waves in large blood vessels which are
subjected to large initial static deformations, the assumption of constant elastic coefficients
may lead to incorrect results. Therefore, in studying such problems through the use of these
two formulations the explicit dependence of these coefficients on the initial deformation must
be taken into account.

Acknowledgement. This work was partially supported by the Turkish Academy of Sciences.

References
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